Loss of histone H2AX increases sensitivity of immortalized mouse fibroblasts to the topoisomerase II inhibitor etoposide.
نویسندگان
چکیده
In mammalian cells, the H2AX histone is rapidly phosphorylated upon the induction of DNA double strand breaks and promotes their repair, which is required for preserving genomic integrity. Etoposide is an inhibitor of DNA topoisomerase II, which causes DNA breaks and induces H2AX phosphorylation. To elucidate whether H2AX may affect cellular sensitivity to etoposide, we studied the response to this agent in immortalized embryonic fibroblasts derived from H2AX knockout mice. Clonogenic assays in cells treated with the drug revealed a greater sensitivity of H2AX null cells compared to wild-type cells, possibly due to the persistence of a higher number of DNA breaks, as detected with the comet assay. In both cell lines, etoposide induced micronuclei formation and nuclear fragmentation; however, in H2AX deficient cells nuclear fragmentation was observed at a lower drug concentration. Flow cytometric analysis showed that etoposide induced a G2/M cell cycle arrest in both cell lines, which occurred at lower drug concentrations in H2AX deficient cells. G2/M arrest was paralleled by an accumulation of cyclin A and cyclin B1, suggesting that treated cells are not able to complete cell cycle correctly and undergo cell death. Taken together, our observations suggest that H2AX takes part to the cellular response to etoposide and confirm its role in the maintenance of genome stability.
منابع مشابه
Role of Topoisomerase IIβ in DNA Damage Response following IR and Etoposide
The role of topoisomerase IIβ was investigated in cell lines exposed to two DNA damaging agents, ionising radiation (IR) or etoposide, a drug which acts on topoisomerase II. The appearance and resolution of γH2AX foci in murine embryonic fibroblast cell lines, wild type and null for DNA topoisomerase IIβ, was measured after exposure to ionising radiation (IR) or etoposide. Topoisomerase II-DNA ...
متن کاملPhosphorylated histone H2AX in spheroids, tumors, and tissues of mice exposed to etoposide and 3-amino-1,2,4-benzotriazine-1,3-dioxide.
We reported recently that exposure of hamster V79 fibroblasts to 6 drugs that varied in their ability to produce DNA double-strand breaks stimulated formation of phosphorylated histone H2AX (serine 139 phosphorylated histone H2AX; gammaH2AX). Using flow cytometry to analyze gammaH2AX antibody-stained cells 1 h after a 30-min drug treatment, the fraction of cells that showed the control levels o...
متن کاملNumerical Analysis of Etoposide Induced DNA Breaks
BACKGROUND Etoposide is a cancer drug that induces strand breaks in cellular DNA by inhibiting topoisomerase II (topoII) religation of cleaved DNA molecules. Although DNA cleavage by topoisomerase II always produces topoisomerase II-linked DNA double-strand breaks (DSBs), the action of etoposide also results in single-strand breaks (SSBs), since religation of the two strands are independently i...
متن کاملLow level phosphorylation of histone H2AX on serine 139 (γH2AX) is not associated with DNA double-strand breaks
Phosphorylation of histone H2AX on serine 139 (γH2AX) is an early step in cellular response to a DNA double-strand break (DSB). γH2AX foci are generally regarded as markers of DSBs. A growing body of evidence demonstrates, however, that while induction of DSBs always brings about phosphorylation of histone H2AX, the reverse is not true - the presence of γH2AX foci should not be considered an un...
متن کاملComparative study of the importance of multidrug resistance-associated protein 1 and P-glycoprotein to drug sensitivity in immortalized mouse embryonic fibroblasts.
Multidrug resistance-associated protein 1 and P-glycoprotein are major ATP-binding cassette transporters that function as efflux pumps and confer resistance to a variety of structurally unrelated anticancer agents. To evaluate the comparative importance of these transporters with respect to anticancer agents, we established and characterized SV40-immortalized [mrp1(-/-)] (KO), [mdr1a/1b(-/-)] (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 33 3 شماره
صفحات -
تاریخ انتشار 2008